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In this paper we give results that lead to stable algorithms for computing with
trigonometric splines. In particular we show that certain trigonometric B-splines
satisfy a recurrence relation similar to the one for polynomial splines. We also
show how these trigonometric B-splines can be differentiated. and a trigonometric
version of Marsden's identity is given. The results are obtained by studying
certain trigonometric divided differences.

1. INTRODUCTION

Schoenberg [5] studied trigonometric spline functions. which he defined as
piecewise trigonometric polynomials of the form

n

ao + L (ak cos kx + bk sin kx).
k=t

(1.1)

It was shown. for example. that any trigonometric spline could be expressed
as a linear combination of certain trigonometric B-splines. The latter are
defined via certain divided differences, and as in the polynomial case these
basis functions have local support.

Trigonometric splines have been one of the sources that have motivated
the study of the more general Chebyshevian splines (see, for example, [6]
and references given therein). However, in most cases it is assumed that one
is dealing with a complete Chebyshev system CPt , CP2 ,.... CPm ; Le., CPt .... , cP;
is a Chebyshev system for j = 1,2,... , m. Note that this property does not
hold on [0, 27T) for the system 1, cos x, sin x, cos 2x, sin 2x, ... , cos nx, sin nx.
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(1.2)

Thus many of the general results do not apply directly to the trigonometric
case. However, most results in this paper are derived by a simple transfor­
mation from the system 1, e iX, ••• , ei(m-l)x.

Also, the general study has not led to an analog of the stable recurrence
relation (see de Boor [1], Cox [2])

Q
. () _ (x - Xi) Qi.m-l(X) + (Xj+m - x) Qj+l.m-l(X)
3.m X - ,

Xi+m - Xi

where Qi.m are polynomial B-splines of order m.
The main purpose of this paper is to give results that lead to stable

algorithms for computing with trigonometric splines. We define a trigono­
metric spline of order m to be a piecewise function of the form (1.1) if
m = 2n + 1 (n ~ 0 integer), and to be a piecewise function of the form

n

L (ak cos(k - t)x + bk sin(k - t)x)
k=l

(1.3)

if m = 2n (n ~ 1 integer).
In Section 2 we study a trigonometric analog of divided differences. If m

is odd these linear functiona1s have the same null space as the divided
differences introduced by Schoenberg in [5]. However, in order to derive a
recurrence relation similar to (1.2) for trigonometric B-splines, we have
found it convenient to use another scaling. The trigonometric divided
differences will be used in Section 3 to define our trigonometric B-splines T;,m
or order m. We show that the functions Ti,m satisfy the relation

( . x - Xi) T () + (. Xj+m - X) T ( )sm --2- i.m-l X sm 2 Hl.m-l X

To (x) = (1 4)3,m X. - x. .
sin J+m 3

2

This analog of (1.2) gives a stable algorithm for calculating Ti,m(x),
We also obtain certain formulas for derivatives of Ti .m , and an integral

representation of trigonometric divided differences with the function Ti,m
as a kernel. Finally, a trigonometric analog of Marsden's identity is given.

2. TRIGONOMETRIC DIVIDED DIFFERENCES

We start with some notation. For any integer m ~ 1 let Sm and Sm be the
m-dimensiona1 comp1es linear spaces of functions on IR generated by

!exp (-i m~ 1 x), exp (-i (m~ 1 _ 1) x) ,...,exp (i m~ 1 x)l
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and

and {I, ei "', ... , ei(m-l),,}, respectively. Also, let Umand U:, be the multiplication
operators defined by

(
m - 1 )(Umf)(x) = exp i-

2
-x j(x)

(
m - 1 )(u:;'f)(x) = exp -i-

2
- x j(x).

We note that Um(8m) = 8m and U:'(8m) = 8m , and if sex) E 8m then
sex) sin«x - c)j2), sex) cos«x - c)j2) E 8m+! for any real constant c.

Furthermore, if sex) E 8m is real valued, then sex) can be written in the
form (1.1) if m is odd and in the form (1.3) if m is even.

Also let Lm be the differential operators defined by Lo = I (the identity
operator), L I = D (~djdx), and for m ~ 2

(2.1)

We observe that 8m = ker(Lm ) for m ~ I.
Correspondingly, we let M m be the differential operators

M m = D(D - i) ... (D - (m - I)i)

Then 8m = ker(Mm ) and

for m ~ I.

for m ~ I. (2.2)

For m ~ 0 now let Xo < Xl < .,. < X m be distinct points in III such that

Xm - Xo < 27T. (2.3)

If f E C([xo , xm]) we define a trigonometric analog of classical polynomial
divided differences by

[Xo , Xl '00" xm]tf

det ( 1
= 2m - 1 X o

det (cos ~
Xo

cos X sin X ... cosnx
Xl X2 Xm- 2

X
cos (n + ~) Xsin-

2
Xl Xm- l

(2.4)

sin (n +~) X)
Xm

if m = 2n + 1, and if m = 2n

[Xo , Xl"'" xm]tf (2.5)

det (cos ~ sin ~ cos (n -~) X sin (n -~) X j~mX))
Xo Xl Xm -2 Xm-l

= 2m -----'---'-----------,---------,----------;--------'-

(
I cos X sin X cos nx sin nx)

det
Xo Xl X2 Xm-l X m '
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Here we have used the abbreviation

for the determinant

269

We note that since the system

J m-k . m-k I
!cos --2- x, sm --2- x\'

<Pm~Xo) I
<PmCxm ) \.

k = 1,3,5,... , k ~ m

(with sin 0 x = 0 excluded if m is odd), is a Chebyshev system on [0 27T),
[xo, Xl"'" xmlt! is well defined. If f is sufficiently differentiable, then as
usual the definition of [XO ' Xl"'" xmldis extended by continuity to the case
when some of the x/s are equal. Hence, if YI' Y2 ,..., Yr are the distinct
members among Xo, Xl"'" xm such that precisely ILk of the x/s are equal to
Yk , then there are constants Ck.v such that

r IJ.k

[xo , Xl"'" xmld = L: L Ck.J(v-I)(Yk).
k~l v~l

(2.6)

Note also that iffE 8m , then [XO, Xl'"'' xmld = O.
In order to analyze these trigonometric divided differences, we also

introduce an exponential version of divided differences. It Xo < Xl < ... < Xm

satisfies (2.3), then we define

(
I e ix ei(m-l)x f(x))

det
Xo Xl Xm- l Xm

<XO , Xl'"'' Xm)f = ..
det (1 e'X . . . e,mx)

Xo Xl ... Xm

We note that if f E 8m then <XO , Xl'"'' Xm ) f = 0 and if p(x) =
L:~l.' akeikX E 8m+! is the unique function in 8m+! such that p(Xj) = f(xj),
j = 0, 1,..., m, then <XO , Xl"'" Xm>f = am'

If some x/s are equal, then <xo, Xl"'" Xm ) f is defined by continuity as
above.

If we let <P be the mapping from [xo , Xo+ 27T) onto the unit circle in C
defined by <p(x) = eix, then
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where [XO' Xl"'" xm]f denotes the classical polynomial divided difference.
Hence most known results for [xo , Xl '00" xm]f can be transferred to the
exponential case. Particularly we have the difference formula

< )f - <Xl "00' xm)f - <Xo , ... , xm-l)f
Xo , Xl '00" Xm - 'x' ,e' m - e'Xo

and the Leibniz rule

(2.8)

m

<XO , Xl"'" xm)f· g = L <Xo ,'00' Xk) J<Xk ,... , Xm) g. (2.9)
k~O

Also, if all the x/s are distinct then

(2.10)

The following lemma, which can be considered as a discrete version of the
identity (2.2), describes the relation between the trigonometric and the
exponential divided differences.

LEMMA 2.1. Assume that xo ,:;; Xl ,:;; .. , ,:;; Xm < Xo + 27T. Then, iff is
sufficiently smooth,

(2.1 1)

where

Proof Since both the right- and left-hand sides of (2.11) depend conti­
nuously on Xo , Xl '00', Xm , we can assume that Xo < Xl < ... < Xm . By the
definitions (2.4) and (2.5) of [Xo , Xl '00" xmkf, by expressing sin and cos in
exponential forms, by forming linear combinations of successive pairs of
columns, and by rearranging columns we obtain

det (exp (-i _m-;_1 x) exp (-i m_-;_3 x) ... exp (i m_-;_l x) J(X))

X o Xl'" Xm-l Xm
= (2i)m -~--c--~-----=----c:------'.:..e-::._~-.:...

det (exp ( - i ; X) exp ( - i m-; 2 x) exp (i ; X))
Xo Xl Xm
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. m (i m ) (. m - 1 )= (2l) exp "2 ~o Xk <XO, Xl"'" Xm>exp l -2- X f(x).
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The next result is a trigonometric analog of a well-known representation of
polynomial divided differences when the points Xj are distinct.

LEMMA 2.2. Assume that Xo < Xl < ... < Xm < Xo + 21T. Then for any
fE C ([xo, xm ])

m f(xj)
[xo , Xl '00" xmJt! = L TI . (( )/2)j=O k""j sm Xj - Xk

Proof By (2.10) we obtain

< >U f
_ ~ exp(i((m - 1)/2) xj)f(xj)

Xo , Xl '00" Xm m - L. n (ix. ix ) •
j~O k""j e ,- e k

The result now follows from the identity

.. (i ) X'-Xke'x; - e'Xk = 2i exp "2 (Xj + xk) sin 1 2 (2.12)

,8 . = _ (. Xj+m + Xj+m-l - Xj+! - Xj )/
1,m sm 2

and Lemma 2.1.
Finally, we shall give a recurrence relation for the trigonometric divided

differences. Since these differences are discrete analogs of the differential
operators Lm , one would expect a simple relation between the differences of
order m and m - 2.

LEMMA 2.3. Assume that m ;;?: 2 and that Xo ~ Xl ~ ... ~ Xm < Xo + 21T
is such that Xo < Xm- l , Xl < Xm . Then

[Xo , Xl'"'' xmltf = YO.m[X2 ,... , xmJtf + ,8o,m[XI ,... , xm-IJtf

+ O:o.m[Xo ,... , xm- 2lt.f,
where

(2.13)

[(
. Xj+m - Xj )(. Xj+m - Xj+l)(' Xj+m-l - Xj)]

sm 2 sm 2 sm 2 '

_1/[(' Xj+m - Xj )(. Xj+m-l - Xj)]
O:j.m - sm 2 sm 2 .
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Cj,m = (2iy" exp (~ I Xk+j).
k~O

From Lemma 2.1 we then have

and since (Umf)(x) = ei"'(Um-d)(x) it follows from (2.8) and (2.9) that

The desired result now follows by using (2.8) on the (m - l)st-order differ­
ences and by (2.12).

3. TRIGONOMETRIC B-SPLINES

Suppose that {Xj} is a nondecreasing sequence of real numbers satisfying
X;+m - X; < 2'lT for all j, where m ?= 1 is a given integer. We define rea1­
valued functions T;.m on IR by T;,m(x) = 0 if Xj+m = Xj and

(
. y _ x)m-l

Tj.m(x) = [Xj , Xi+! ,... , Xi+m]t sm --2- + (3.1)

if Xj+m > Xj . Here the divided difference is taken with respect to y, and 00

is defined to be O. As usual

(sin z)+ = sin z

=0
if z > 0,

otherwise.

The functions Tj,m are right continuous and

T- (x) = l/sin Xi+! - Xi
3~ 2

=0 otherwise.
(3.2)
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We note that if m = 2n + 1 is odd, then the functions Ti •m are essentially
the trigonometric B-splines defined in [5]. These functions were defined as

det ( 1
cosy siny ... cos ny sin ny (sin«y - x)j2»'~-I)

Xo Xl X2 Xm- 2 Xm- l XmCm
det ( 1

cosy siny cos ny sin ny :JXo Xl X2 Xm-2 Xm- l

where Cm = 7T 2m- l(n!)2j(m - I)!.
Similar to (3.1), we also define complex-valued functions Ei •m on lR by

Ei.m(x) = 0 if XHm = Xi and

where
(3.3)

=0

if y > X,

otherwise.

As in the polynomial case (see [I)) it now follows from (2.8) and (2.9) that
if XHm > Xi then Ei.m satisfies the recurrence relation

( ix iX;) E ( ) + ( iXHm iX\ E ( )£. (x) = e - e i.m-l X e - e , i+l.m-l X. (3.4)
3.m eX;+m _ eX;

Also, by differentiating (3.3) and by (2.8) we obtain

r (x) = i(m - 1) eix Ei.m-l(~) - EH~.m-I(X)
,.m e,xHm _ e'x;

From (2.12) and Lemma 2.1 we obtain the relation

Ti.m(x) = 2iU:'Ei.m(x) exp (~ k~O Xi+k)'

(3.5)

(3.6)

Hence most properties of the functions Ti .m can be derived from similar
properties of the functions Ei •m •

THEOREM 3.1. Suppose that m;;:' 2 and Xj < XHm < Xj + 27T. Then
Ti.m satisfies the relation (1.4).

Proof. By (2.12), (3.4), and (3.6) we obtain

(sin XHm
2
-Xi) Tj.m(x) = exp (~ mf (Xi+k - X») «eiX - eiX;) Ei.m-l(x)

k~l

and hence (1.4) follows from another application of (2.12) and (3.6).
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We note that if t(x) = Lj cjTj.m(x) then by (104) the value t(X) can be
computed by forming positive linear combinations of the coefficients C; . Such
an algorithm was derived in [1] in the polynomial case. It also follows
immediately from (104) and (3.2) that

A similar result was obtained by Karlin [3, p. 524] for Chebyshevian splines
using total positivity arguments. Note also that

(3.7)

This can of course also be seen directly from (3.1).
Similar to the proof of Theorem 3.1, the following differentiation formula

for the functions T j •m follows from (304) and (3.5).

THEOREM 3.2. Suppose that m ;:? 2 and Xj < Xi+m < Xj + 27T. Then

I m _ 1 (cos _x_-_
2

_X_j) Tj.m-1(x) - (cos Xi+m
2
- X) Ti+l.m-l(X)

To (x) = ( )--------
J.m 2 x· - x.sin Hm J

2

Note the similarity of (3.7) to the formula

for differentiating polynomial B-splines. However, since the coefficients of
Tk •m- 1 in (3.7) depend on x, it will be more complicated to take higher
derivatives in the trigonometric case.

Let Dm be the differential operatol Dm = D2 + «m - 1)/2)2. The following
formula, which is valid if Xj < Xi+m-l, Xj+! < Xj+m and Xj+m - Xj < 27T,
can be derived from Lemma 2.3 or by differentiating both sides of (3.7)

where CXj.m , {3j.m , and Yj.m are given by (2.13).
Let t(X) = Lj cjTj.m(x) and suppose that Xr+1 > Xr . If we assume that

m = 2n + 1 then t(x) also has the representation

n

t(X) = ao + I (ak cos k(x - x) + bk sin k(x - x)) (3.9)
k~l



TRIGONOMETRIC B-SPLINES 275

on [Xr , Xr+1)' where xE [xr , Xr+1) is given. By using (3.7) and (3.8) the
coefficients ak and bk can easily be computed. In order to see this, define
differential operators Vk and Wk by Vo = I and for k = 1, 2, ... , m

By (3.8) we obtain

Vkt(x) = Ldk)Tj ,m_2k(X)
j

for k = 0, 1, ... , n,

where cjO) = Cj , and for k = 0, 1,... , n - 1

C(k+1) = (r - 1)(r - 2) (a C(k) + f3. C(k) + y. elk»)
J 4 ),r ) )-I,r )-1 )-2,r )-2 '

where r = m - 2k.
Similarly by (3.7)

Wkt(x) = L djk)(x) T j,m-2k+1(X)
j

for k = 1,2,... , n,

. XHr-l - Xj-l
sm 2

x· 1 - X )C(k-l) cos Hr- .
)-1 2

where

(

X-X,C(k-I) cos ---)
d?\x) = (~)) 2

2 . XHr - Xj
sm 2

and r = m - 2k.
Thus, at any point x, Vkt(x) and Wkt(x) can be found by taking weighted

differences of the coefficients Cj and by using (1.4). If we now successively
apply Vo , VI"'" Vn to (3.9) at x = xwe find that the coefficients ak satisfy a
triangular linear system with the solution given by

k = 0, 1,... , n,

where ()k,O = I and for r ;;:: 1

r-l
()k.r = Il «n - j)2 - k 2),

j~O

°:s;; k :s;; n - r.

Similarly by applying WI' W2 ,... , Wn to (3.9) at x = xwe obtain

k = 1,2,... , n.
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Note that if m is even, a piecewise representation of t(x) can be derived by an
algorithm similar to the one described above.

We next give a trigonometric analog of an integral representation of
divided differences. If Xo < X m < Xo + 27T we have for f sufficiently smooth

where L m is given by (2.1). This can be proved either via a similar identity
involving <xu , Xl"'" Xm) and the function Eo.m or by the following trigo­
nometric Taylor expansion:

2m
-

1 IX (. X - y)m-l
f(x) = Sm(X) + (m _ 1)! "'0 sm -2- Lmf(y) dy.

Here Sm E 8m is determined by So(X) == 0, SI(X) = f(xo) and for k ;::: °

2k+1
(. X - XO)k+1 ,+ (k + I)! sm-2- Ld (xo)·

(3.10)

(3.11)

Formula (3.10) follows by induction and an integration-by-parts argument.
For completeness, we also give a trigonometric analog for Marsden's iden­

tity. Let £j,m(x) = (eiXH'. - eix;) Ej.m(x) and Tj,m(x) = (sin((xj+m - xj)/2))
X Tj,m(x), By (3.6) we then have

~ *~ (.m-Ie': )Tj.m(x) = UmEj.m(x) exp 1--2- <;j.m ,

where ~j,m = (Xj+! + ... + Xi+m-l)/(m - 1).
Now let I be any nonempty interval of the form (Xk , x T ) such that at least

m xi values are :;::;;Xk and at least m Xi values are ;:::xT • As in the polynomial
case (see [1,4]) it now follows that

m-l

(eiY - eiX)m-1 = L Ej,m(x) n (eiY - eiXHk)
i k~l

for X E I and y E lR. By (2.12) and (3.11) we therefore obtain

(3.12)
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By expanding both sides of (3.12) in powers of e
iy and by comparing coeffi­

cients, we obtain for x E I

ikx _ (m - 1)-1" (m)E~ ()e - k L. Uj.k J.m X ,
J

where ut~? are defined by

k = 0, 1,... , m - 1,

m~ m~

L (-I)k u~:"iei(m-1-k)X = L (eiX - eiXj+k).
k~O k~1

Now let

(m) _ ( m - 1 )-1 (m) ( • m - 1 t )
T j.k - k + (m _ 1)/2 uj,k+(m-1)/2 exp -1--2- ,>j.m

for k = -em - 1)/2, -em - 1)/2 + 1,... , (m - 1)/2. Then it follows from
(3.11) that for x E I and k E {-(m - 1)/2, -em - 1)/2 + 1,... , (m - I)/2}

e ikx = " T(m) T. (x)
~ 1.k 3.m ,

j

(3.13)

and hence, by taking real and imaginary parts, we can express cos kx and
sin kx as real linear combinations of Tj,m(x).

Suppose that X q < Xq+l' If m is odd then it follows from [5] that the
functions {Tq+1-m,m ,... , Tq,m} are linearly independent on (xq , Xq+l)' We note
that this linear independence also follows from (3.13) for any m ~ 1. For
since the functions Tq+1-m,m ,... , Tq,m span an m-dimensionallinear space of
functions on (xq , Xq+l)' they must be linearly independent. Hence we can
show that the trigonometric B-splines Tj •m span a space of trigonometric
splines. To this end suppose Zo < Z1 < ... < ZJ+l , where Zj+l - Zj < 21/",
and let r1 , r2 ,... , rJ be integers such that 1 ~ rj ~ m, Now define Ym(z, r)
to be the set of all real-valued function t defined on [zo , zJ+l) such that

(i) t I[zj.zj+l) E 8m ,

(ii) t(k)(Zj_) = t(k)(Zj+),

j = 0, I, ... ,J,

j = 1,2,... , J, °~ k ~ m - 1 - rj.

The elements of Ym(z, r) are called trigonometric splines (with interior
knots Z1 , Z2 ,... , ZJ with multiplicities r1 , r2 ,... , rJ). In the case when m is odd
it was essentially shown in [5] that every t E Ym can be uniquely written in
the form

J r; 8k-1 (. Zj _ x )m-1
t(x) = Sm(X) + L L Cj.k 8Zk-1 Sill 2 '

J~1 k~1) +
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where Sm E 8m. This of course also holds when m is even. Thus

dim Ym = N + m, where

As in the polynomial case we can now define a nondecreasing sequence
{Xj}~~:m such that {Xl' Xz ,... , XN} = {Zl , Zz ,... , zJ} and where rj of the xr's
are equal to Zj . Now the functions {Tj,m}~l_m form a basis for the space Ym .

4. REMARKS

1. Schoenberg [5] considers the subspace Ym of Ym which consists of all
periodic trigonometric splines, i.e.,

Ym(Z, r) = {t E Ym(z, r) I t(k)(ZO+) = t(k)(Z.T+l-)' k = 0, 1,... , m - I}.

The space Ymhas dimension N and a local basis can be constructed from the
functions {Tj,m} by techniques analogous to the one used for the example
in [7] in the polynomial case.

2. In addition to the recurrence relations (1.2), (1.4) and (3.4), we also
mention the relation

with
CJ.1(X) = 1/(cos Xi+l - cos Xj)

=0

Here we assume that Xj < XJ+m < Xj + 7T.

The functions Cj,m are piecewise of the form

m-l

L ak cos kx.
k~O

Xj ~ X < Xj+l

otherwise.

(3.14)

To derive (3.14) we simply take <p(x) = cos X in (2.7) and proceed as in the
derivation of (3.4).
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