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In this paper we give results that lead to stable algorithms for computing with
trigonometric splines. In particular we show that certain trigonometric B-splines
satisfy a recurrence relation similar to the one for polynomial splines. We also
show how these trigonometric B-splines can be differentiated, and a trigonometric
version of Marsden’s identity is given. The results are obtained by studying
certain trigonometric divided differences.

1. INTRODUCTION

Schoenberg [5] studied trigonometric spline functions, which he defined as
piecewise trigonometric polynomials of the form

ap+ Y, (ay cos kx + by, sin kx). (1.D)

k=1

It was shown, for example, that any trigonometric spline could be expressed
as a linear combination of certain trigonometric B-splines. The latter are
defined via certain divided differences, and as in the polynomial case these
basis functions have local support.

Trigonometric splines have been one of the sources that have motivated
the study of the more general Chebyshevian splines (see, for example, [6]
and references given therein). However, in most cases it is assumed that one
is dealing with a complete Chebyshev system ¢, , @, ,..., Pr, ; i.€., @1 ..., @5
is a Chebyshev system for j == 1, 2,..., m. Note that this property does not
hold on [0, 27) for the system 1, cos x, sin x, cos 2x, sin 2x,..., COs nX, sin 7x.

266

0021-9045/79/030266--14$02.00/0

Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



TRIGONOMETRIC B-SPLINES 267

Thus many of the general results do not apply directly to the trigonometric
case. However, most results in this paper are derived by a simple transfor-
mation from the system 1, ¢%,..., eftm-1=,

Also, the general study has not led to an analog of the stable recurrence
relation (see de Boor [1], Cox [2])

Qj,m(x) _— (x _ x.’i) Qa',m—l(x) =+ (xi+m - x) Q:i+1,m—1(x) , (12)

Xitm — Xj

where Q; ,, are polynomial B-splines of order m.

The main purpose of this paper is to give results that lead to stable
algorithms for computing with trigonometric splines. We define a trigono-
metric spline of order m to be a piecewise function of the form (1.1) if
m = 2n + 1 (n > 0 integer), and to be a piecewise function of the form

i (ay cos(k — Hx + by sin(k — H)x) (1.3)

if m = 2n (n > 1 integer).

In Section 2 we study a trigonometric analog of divided differences. If m
is odd these linear functionals have the same null space as the divided
differences introduced by Schoenberg in [5]. However, in order to derive a
recurrence relation similar to (1.2) for trigonometric B-splines, we have
found it convenient to use another scaling. The trigonometric divided
differences will be used in Section 3 to define our trigonometric B-splines 7; ,,
or order m. We show that the functions 7T; ., satisfy the relation

(Sil’l d ; xj) Tj,m_41(x) -+ (Sin Iﬂnz;’)‘c) Tj+1.m«1(x)
Ti.m(x) = x . . (] 4)
sipn =4m 77

2

This analog of (1.2) gives a stable algorithm for calculating 7 ,.(x).

We also obtain certain formulas for derivatives of T; , , and an integral
representation of trigonometric divided differences with the function 7;,,
as a kernel. Finally, a trigonometric analog of Marsden’s identity is given.

2. TRIGONOMETRIC DIVIDED DIFFERENCES

We start with some notation. For any integer m > 1 let S,, and S,, be the
m-dimensional comples linear spaces of functions on R generated by

3exp(——im 5 I x), exp (~i("5 L_ 1) x) ..., exp (i7" ! x)f
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268 LYCHE AND WINTHER

and {1, e'=,..., ¢ém-12} respectively. Also, let U,, and U} be the multiplication
operators defined by

(Unf)x) = exp (i

m

-1 x) £
and .
(UrH)) = exp (=i 0 x) f().

We note that U,(S,) = S, and UX(S,) = S,., and if s(x)eS,, then
s(x) sin((x — ¢)/2), s(x) cos((x — ¢)/2) € S,.4, for any real constant c.
Furthermore, if s(x) €.S,, is real valued, then s(x) can be written in the
form (1.1) if m is odd and in the form (1.3) if m is even.
Also let L,, be the differential operators defined by L, = I (the identity
operator), L, = D (=d/dx), and for m = 2

Ly = (0% + (251 L. @1

We observe that S,, = ker(L,,) for m > 1.
Correspondingly, we let M, be the differential operators
M,=DD—i)(D—-m—1i) for m=1

Then S,, = ker(M,,) and

L, = U:M,U,  for m>1. (2.2)
For m = 0 now let x, << x; < -+ < X, be distinct points in R such that

X — Xg < 2. (2.3)

If fe C([xy , xx]) We define a trigonometric analog of classical polynomial
divided differences by

[Xg s X1 5eees X]o f (2.4)
det ( 1 cosx sinx - cosnx sinnx f (x))
= Jm-1 Xo X1 X T Xm—2 Xm—1 Xm
X . X 1 . 1
det cosT s1n—2— ©t COS (n +§)x sin (n —i—i)x
X Xy aee Xm_1 Xm
ifm=2n-+1,andif m = 2n
[XO > xl ERRES] xm]tf (2.5)
X . X 1 . 1
det (€085 sin5- o cos (n —i)x sin (n —i)x f(x)
= Jm Xo X1 Xm—2 Xm—1 X
- det ( 1 cosx sinx - COSHX sin nx)
¢ Xo X Xy " Xpme1 X
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Here we have used the abbreviation

det (‘Pn 112 T <Pm)
Xo X1 T Xp
for the determinant
; ‘Po(.xo) <P1('xo) <ngxa) ‘
| ()Do(xm) (Pl(xm) (Pm(xm) ‘

We note that since the system

m—k Sinm—k
2 p)

cos Xi, k=1375..kK<m

(with sin 0 x = 0 excluded if m is odd), is a Chebyshev system on [0 27),
[Xg 5 X1 5000y X)e f s Wwell defined. If f is sufficiently differentiable, then as
usual the definition of [x,, x; ,..., X,]; fis extended by continuity to the case
when some of the x;’s are equal. Hence, if y,, y,,..., y, are the distinct
members among X, , Xy ,..., X,, such that precisely p, of the x;’s are equal to
1 » then there are constants ¢, such that

r Mk

[Xo s X1 yoves Xl f = 3 Y o () (2.6)

k=1 »=1

Note also that if f€ S, , then [x,, X, ,..., X, Js.f = 0.

In order to analyze these trigonometric divided differences, we also
introduce an exponential version of divided differences. It x, < x; < - < x,,
satisfies (2.3), then we define

det(l gt .. pilm-llz f(x))

Xo X1 7 Xma Xm

<x0 > X1 seees xm>f =

det ( 1 e ... eimm)

Xo Xp X

We note that if fe S, then (x,,x ,., % f =0 and if p(x) =
o axe’® € S, is the unique function in S,,; such that p(x;) = f(x,),
7 =0, 1,..,m, then {xg, Xy o0, Xp> f = @y, .

If some x,;’s are equal, then {(x,, x; ,..., X,> f is defined by continuity as
above.

If we let @ be the mapping from [x,, x, + 27) onto the unit circle in C
defined by ¢(x) = ¢, then

<xo s X1 seees xm>f= [‘P(xo), ‘P(xl):-"a (P(xm)]fo (P_l’ (27)
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where [x,, x; ,..., X,,] f denotes the classical polynomial divided difference.
Hence most known results for [x,, x;,..., x,,]/ can be transferred to the
exponential case. Particularly we have the difference formula

<x1 gty xm>f.—' <x0 LI xm—1>f (2-8)

<x0 H X1 ERRRE] xm>f =

P —
and the Leibniz rule
{Xg s X1 sees X0 [ 8 = éo (Xp yers Xpp f4Xp gy X 8- 2.9
Also, if all the x;’s are distinct then
- f(xy) (2.10)

X s X1 seers Xpo f = “ s (e"* — ety

The following lemma, which can be considered as a discrete version of the
identity (2.2), describes the relation between the trigonometric and the
exponential divided differences.

LEMMA 2.1. Assume that x, < X; <~ < X < Xo + 2. Then, if f is
sufficiently smooth,

[Xo s X1 5ees Xnde [ = Co.m$X0 s X1 5ervs X Un S (2.11)

where
i i m
Co.m = (20)™ exp (—2« Y xk).
k=0

Proof. Since both the right- and left-hand sides of (2.11) depend conti-
nuously on x4, X; ,..., X,, , We can assume that x, < x; < -+ < x,, . By the
definitions (2.4) and (2.5) of [x,, X1 5...s X]: /> DY eXxpressing sin and cos in
exponential forms, by forming linear combinations of successive pairs of
columns, and by rearranging columns we obtain

[x() > X1 500 xm]t.f

det (CXp (—imzl x) eXp(_im;3x) eRP (im;lx) f(x))

Xo X1 T Xm—1 Xm

s o B o)

Xo X e X

= (2iy"
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or
[xo s XY yeeny xm]tf

= (2i)™ exp (-12— ’Za xk) (X » Xq yerey Xy EXP (i m 3 I x)f(x).

The next result is a trigonometric analog of a well-known representation of
polynomial divided differences when the points x; are distinct.

LeMMA 2.2, Assume that x4 < x; << =+ < Xy, << Xo -+ 27. Then for any
feC([xo, xnl)

=z 162
o> %1 ee Xmbef = X FE iy — 50

Proof. By (2.10) we obtain

{Xg s X1 yeres Xy U f = i exp(i((m — 1)/2) x,) f(x;) .

j=0 nkgéi (emj - eimk)
The result now follows from the identity

Xj — Xg

2

€ — & = Djexp (_‘12_ (x; + xk)) sin (2.12)

and Lemma 2.1.

Finally, we shall give a recurrence relation for the trigonometric divided
differences. Since these differences are discrete analogs of the differential
operators L,, , one would expect a simple relation between the differences of
order m and m — 2.

LeMMA 2.3. Assumethatm > 2andthat xy < x; < < X < Xo + 27
is such that xy << Xpm_y , X, < X, . Then

[xo > X1 500y xm]tf = yo.m[x2 [ARRS] xm]tf+ Bo.m[?ﬁ EAAE xm-—l]tf
+ 0lo,m['x[) sveey xm—-2]tf;

where
Yim = 1/ [(sin mez— %i )(sin Xitm 2_ Xi+1 )],
Bim = — (Sin Xjtm xf+m—21 — Xjp1 — X )/
(2.13)
i 2 2 2 =2

T 1/[(sin xj+’"2_ i )(sin x”'""; — x,-)].
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Proof. Let
. i &
Cjm = (20" exp (7 ¥ xk+j)-
k=0
From Lemma 2.1 we then have

[X0 » X1 seees Xon o f = Co.m$Xp > X1 5ees X¥mp Unif,
and since (U, f)(x) = e*(U,._, f)(x) it follows from (2.8) and (2.9) that
(@™ — ™)Xy » X1 yores Xm> Unf
= (X1 yeees X Unf — {Xg 5eees Xme1) Unf
= "Xy yorry X Upeof + <X vy Xm> Upaf
— €™ 1 Xy yores Xmer) Upeaf — (X oer Xm—s) Up—of.

The desired result now follows by using (2.8) on the (m — Dst-order differ-
ences and by (2.12).

3. TRIGONOMETRIC B-SPLINES

Suppose that {x;} is a nondecreasing sequence of real numbers satisfying
Xjom — X%; << 2 for all j, where m > 1 is a given integer. We define real-
valued functions T ,, on R by T; ,(x) = 0if x;,,, = x; and

) — x\m1
Tym(X) = %5 s Xpsa sees Xsamle (sin 25 )+ 3.1

if x;,m > x; . Here the divided difference is taken with respect to y, and 0°
is defined to be 0. As usual

(sin z),. = sin z if z>0,
=0 otherwise.

The functions T}, are right continuous and

X;

T;1(x) = l/sini"’”—l—;— if x; <x <x4,

: 32
=0 otherwise.
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We note that if m = 2n - 1 is odd, then the functions T}, are essentially
the trigonometric B-splines defined in [5]. These functions were defined as

det ( 1 cosy siny --- cosmy sinny (sin{(y — x)/2)):{“1)
c Xo X Xy i Xm—g  Xm— . Xm
m det ( 1 cosy siny -+ cosmy sinny y ) ’
Xo X Xe 7 Xmg  Xmaa Xm

where ¢, = 7 2" Yn!)2/(m — 1)!.
Similar to (3.1), we also define complex-valued functions E;,, on R by
E; m(x) = 0if x;,,, = x; and

Ej,m(x) = <x0 s X1 505 xm>(eiy - e’iw)’-’f—l, (3.3)
where
(v —e), = e —et*  if y>x,
=0 otherwise.

As in the polynomial case (see [1]) it now follows from (2.8) and (2.9) that
if x;,m > x; then E; ,, satisfies the recurrence relation

(€ = ) By a(x) + (€ — ™) Eppys(®)

E; () = L (3.4)
Also, by differentiating (3.3) and by (2.8) we obtain
’ o ix Ejma(X) — Ejiy m(X)
E; (x) = i(m — 1) &* — o _’emj . (3.5
From (2.12) and Lemma 2.1 we obtain the relation
Tyn3) = UL, ) exp (5 3 510) (3.6)
k=0

Hence most properties of the functions T, can be derived from similar
properties of the functions E; ,, .

THEOREM 3.1. Suppose that m = 2 and x; < xj.pm < x; + 27. Then
T;.m satisfies the relation (1.4).

Proof. By (2.12), (3.4), and (3.6) we obtain

» m-—1

(sin 22225 7,00 = exp (5 & (s = ) (@ — ¢ Ey(2)

+ (e — ™) Eji1,m-2(X)),

and hence (1.4) follows from another application of (2.12) and (3.6).
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We note that if #(x) = 3, ¢;T; n(x) then by (1.4) the value #(x) can be
computed by forming positive linear combinations of the coefficients c; . Such
an algorithm was derived in [1] in the polynomial case. It also follows
immediately from (1.4) and (3.2) that

Ty m(x) >0 for xe&(x;, Xjim)-

A similar result was obtained by Karlin [3, p. 524] for Chebyshevian splines
using total positivity arguments. Note also that

TJ‘,m(x) =0 it X ¢[x;, Xjym)-

This can of course also be seen directly from (3.1).
Similar to the proof of Theorem 3.1, the following differentiation formula
for the functions T, follows from (3.4) and (3.5).

THEOREM 3.2. Suppose that m > 2 and x; << Xjn, << X; + 27. Then

(COS al ; xj) Ti.m‘l(x) - (COS fﬁinz;)f) Tj+1,m—1(x)

Xiym — X
2

, o im—1
T = (7 ) :
sin
3.7
Note the similarity of (3.7) to the formula

Qim(x)=(m—1) Qj.ma(%) — Qii1,ma(X)

Xiem — X5

for differentiating polynomial B-splines. However, since the coefficients of
Ti.m-y in (3.7) depend on x, it will be more complicated to take higher
derivatives in the trigonometric case.

Let D, be the differential operator D,, = D? 4 ((m — 1)/2)2. The following
formula, which is valid if x; << X;,m_1, Xjrq3 < Xjpm and X, — X; < 2,
can be derived from Lemma 2.3 or by differentiating both sides of (3.7)

DmTj,m(x) = W (QLJ',mT]',m—Z(x)

+ BimTis1,m—2(X) + Vi.mTise,m—e(X)), (3.8)

where a; . » Bj.m , and y; , are given by (2.13).
Let #(x) = ¥ ¢;T; n(x) and suppose that x,,, > x,. If we assume that
m = 2n + 1 then #(x) also has the representation

() = ao + 3 (@ cos k(x — ) + by sin k(x — &) (3.9)

k=1
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on [x,, x,;,), where £¢€[x,, x,,,) is given. By using (3.7) and (3.8) the
coefficients a, and b; can easily be computed. In order to see this, define
differential operators ¥V, and W, by Vo = Iand fork = 1,2,....m

Vi = Dm—2k+2Vk—1 > Wy=D Vi

By (3.8) we obtain

th(x) = Z C;k)Tj_m._gk(x) fOI‘ k = 0, 1,..., n,
3

where ¢/” = ¢;,and fork = 0,1,...,n — 1

. r— D(r—2 .
c}('k+1) = ( % ) (O‘j,rc;k) + Bj—l,rc;.’i)l + yj—2,rc;f)2)’
where r = m — 2k.
Similarly by (3.7)

Wit(x) = ¥ dP(x) Tjmmen(x)  for k =1,2,.,n,

K

where
e cos XL ekt gog Xitrt T X
( r—1 i 2 -1 2
A% = _
5 () ( 2 ) Xigr — X; Xjpro1 — X1
: i+r i 3 d+r— i—
sin sin =21 7Ol
2 2

and r = m — 2k.

Thus, at any point x, V;#(x) and W,t(x) can be found by taking weighted
differences of the coefficients ¢; and by using (1.4). If we now successively
apply ¥, , V1 5..., V,, 10 (3.9) at x = £ we find that the coefficients a, satisfy a
triangular linear system with the solution given by

k—1
ag = (Vn—kt(‘i) - z ei,n—kai)/ek,'n—k s k = 0, lr'-s n,
j=0
where 8, , = 1 and for r > 1
71
bor = [T — ) — KD, O<k<n—-r
j=0

Similarly by applying W; , W, ,..., W, to (3.9) at x = £ we obtain

k-1
be = (Wooknt® = 3 sl [0, K= 1,2,0m
i=1
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Note that if m is even, a piecewise representation of #(x) can be derived by an
algorithm similar to the one described above.

We next give a trigonometric analog of an integral representation of
divided differences. If x, < x,, << x, -+ 27 we have for f sufficiently smooth

[XO > X1 5eeny xm]t.f = % J;::m TO.m(y) me(y) dya

where L,, is given by (2.1). This can be proved either via a similar identity
involving (x4, X1 ,..., Xn» and the function E, ,, or by the following trigo-
nometric Taylor expansion:

F6) = 50 + Gy | (5“5 2)” Lnf ). 310)

Here s,, €S, is determined by sy(x) = 0, 53(x) = f(x,) and for k = 0

2k i — k -
Seaa) = i) + I (sin T52) cos 520 Luf (xo)

2k+1

THED

(sin d _2 x“)kH Ly f'(xo)-

Formula (3.10) follows by induction and an integration-by-parts argument.

For completeness, we also give a trigonometric analog for Marsden’s iden-
tity. Let £; ,(x) = (e+n — €i%) E; ,(x) and Tj,m(x) = (in((xXj1m — %;)/2))
X Tjm(x). By (3.6) we then have

Tym) = URE, () exp (175 ), (3.11)

where &, = (Xja + 0+ Xjm)/(m — 1)

Now let I be any nonempty interval of the form (x; , x,) such that at least
m x; values are <(x; and at least m x; values are >>x, . As in the polynomial
case (see [1, 4]) it now follows that

m—1 A 3
(e — eynt = ¥ B ) [] (€7 — &™) (3.12)
§ k=1

for x € I and y € R. By (2.12) and (3.11) we therefore obtain

(sin 25 x)m‘1 =3 T,.,m(x)ﬁ sin (L =1E ),
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By expanding both sides of (3.12) in powers of e’ and by comparing coeffi-
cients, we obtain for x e 1

ere = (" 1) Z oME (), k=0,1,.,m—1,

where o} are defined by

m—1 m—1 . .
Z (_l)k U;Tr;c)ei(m—l-k)m — Z (e“” — e“”jﬂc).
k=0 k=1

Now let

(k —i—n(1m——l 1)/2)—1 T3k om-)/2 EXP (“i Ln‘zll £.n)

for k = —(m — 1)/2, —(m — 1)/2 + 1,..., (m — 1)/2. Then it follows from
(3.11) that for xe fand k e {—(m — 1)/2, —(m — 1)/2 + L,..., (m — 1)/2}

z T (), (3.13)

and hence, by taking real and imaginary parts, we can express cos kx and
sin kx as real linear combinations of T ,(x).

Suppose that x, < x4, . If m is odd then it follows from [5] that the
functions {7y, 1—m.m »--» Tq.m} are linearly independent on (x, , x,.,). We note
that this linear independence also follows from (3.13) for any m > 1. For
since the functions To.y_m.m »e-s To,m Span an m-dimensional linear space of
functions on (x,, X,,1), they must be linearly independent. Hence we can
show that the trigonometric B-splines 7;, span a space of trigonometric
splines. To this end suppose z, << z; < '+ < z;,4 , where z;,, — z; < 2,
and let r,, ry,..., r; be integers such that 1 < r; << m. Now define Y,.(z, r)
to be the set of all real-valued function ¢ defined on [z, , z,,,) such that

(l) t [[z]-,sz) €Sm j= o,1,..,J,
(i) 19(z—) = 19(z,+), j=12.uJ,0<k<m—1—r,.

The elements of Y,(z, r) are called trigonometric splines (with interior
knots z, , z, ..., z, with multiplicities r; , 7, ,..., 7;). In the case when m is odd
it was essentially shown in [5] that every ¢t € ¥,, can be uniquely written in
the form

J Ti _
t(x):sm(x)+z Z: ]kak

1 Zj — x m—1
2
+

- (sin 5
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where s, €5, . This of course also holds when m is even. Thus

dmY, = N+ m, where N=Yr.

M-

1

]

)

As [jln the polynomial case we can now define a nondecreasing sequence
(X} such that {x, , X, ,..., Xy} = {z;, Z3 ..., z;} and where ; of the x,’s
are equal to z; . Now the functions {T,-,m};il_m form a basis for the space Y, .

4. REMARKS

1. Schoenberg [5] considers the subspace lnf,,, of Y,, which consists of all
periodic trigonometric splines, i.e.,

V(e r) = {te Yulz, ) | 19(z0+) = t9(z,3=), k = 0, 1,0y m — 1},

The space l?m has dimension N and a local basis can be constructed from the
functions {7 ,} by techniques analogous to the one used for the example
in [7] in the polynomial case.

2. In addition to the recurrence relations (1.2), (1.4) and (3.4), we also
mention the relation

Cy ) — (cos x — ¢08 X;) Cj,m_1(x) + (cOs X, — €08 X) Cjiq,;m_1(X)
Hm COS Xjm — COS X;

(3.149)
with
C;1(x) = 1/(cos x;,; — €08 X;) xX; < x < X
=0 otherwise.

Here we assume that x; << x;,., < X; + 7.
The functions C; ,, are piecewise of the form
m—1

Y ay cos kx.

k=0

To derive (3.14) we simply take ¢(x) = cos x in (2.7) and proceed as in the
derivation of (3.4).
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